Option Pricing

Posted on April 6, 2015

European options in the Binomial tree model

Refer to Binomial model.

One step

Two steps

General \(N\)-step model

The formula for \(D(0)\) in an \(n\) step model is

\[ D(0) = \sum\limits_{k=0}^{N} \binom{N}{k} p^k_{*}(1-p_{*})^{N-k} f(S(0)(1+u)^{k}(1+d)^{N-k})\]

Cox-Ross-Rubinstein Formula

Let the payoff of a call option with strike price \(X\) satisfies \(f(x) = 0\) for \(x \le X\), which reduces the number of terms in the summation formula given in the previous section. Let \(m\) be the smallest non-negative integer such that \(S(0)(1+u)^m(1+d)^{N-m}>X\). Hence \[C_E(0) = (1+r)^{-N}\sum\limits_{k=m}^{N}\binom{N}{k}p^K_{*}(1-p_{*})^{N-k}\left(S(0)(1+u)^{k}(1+d)^{N-k} - X \right).\]

Further, the expressions of \(x(1)\) and \(y(1)\) are as follows

\[ \begin{align} x(1) &= \sum\limits_{k=m}^{N}\binom{N}{k}\left(p_{*}\frac{1+u}{1+r}\right)^k \left((1-p_{*})\frac{1+d}{1+r}\right)^{N-k}\\ y(1) &= -X (1+r)^{-N} \sum\limits_{k=m}^{N}\binom{N}{k} p_*^{k}(1-p_*)^{N-k} \end{align}\]

If we define \(q = p_{*}\frac{1+u}{1+r}\), we can simplify the expression of \(x(1)\).

\[ \begin{align} C_E(0) &= S(0)[1-\Phi(m-1, N, q)] - (1+r)^{-N}X[1-\Phi(m-1, N, p_{*})] \\ P_E(0) &= -S(0)\Phi(m-1, N, q) + (1+r)^{-N} X \Phi(m-1, N, p_{*}) \\ \end{align}\]

\[ \begin{array}{c| c| c} & x(1) & y(1) \\ \hline \text{for a call} & 1-\Phi(m-1, N, q) & -(1+r)^{-N}X[1-\Phi(m-1, N, p_{*})] \\ \text{for a put} & -\Phi(m-1, N, q) & (1+r)^{-N}X \Phi(m-1, N,p_{*}) \end{array}\]

American options in the Binomial tree model


Notes